CSC 161 Grinnell College Spring 2018
Scribbler 2
CSC 161:
Imperative Problem Solving and Memory Management
Scribbler 2
Course Home References Course Details: Syllabus, Schedule, Deadlines, Topic organization MyroC Documentation Project Scope/
Acknowledgments

Note: Although this course is well developed,
expect adjustments in some details as the semester progresses and the course evolves.

CSC 161 Syllabus, Spring 2018

Course work: Course Format Course Components Submitting Work Supplemental Problems Anticipated Work Load
Resources: Instructor
in-class slides
Reference Materials A Note on Typos Troubleshooting Guide Prog./Debugging Hints
Collaboration: Pair Programming Pair Responsibilities Academic Honesty Collaboration Tutors
Course Policies: Dates, Deadlines Emergencies, Illness Cell Phones Accommodations Grading
 

CSC 161 is the second course in Grinnell's 3-course, introductory computer science sequence

The course explores elements of computing that have reasonably close ties to the architecture of computers, compilers, and operating systems. The course takes an imperative view of problem-solving, supported by programming in the C programming language. Some topics include:

Course Work

Course Format and Activities

This course follows a lab-based format. Thus, work related to [almost] all class sessions proceed in three stages:

  1. Read Before Class: Students are expected to read an on-line reading prior to each class session. Each student should prepare a list of questions or topics for class discussion, should questions arise on the reading.

  2. Ask Questions and Work on Lab during Class: Each class will begin with questions from students, based on the reading. Following this initial discussion, the course may involve some opening comments or a short quiz on the reading. After these preliminaries, students will work collaboratively, in pairs, on a lab exercise based on the reading.

  3. Finish Lab for Homework: Although the in-class labs will help students get started on the lab exercises, students may not complete the lab during the class period. Any lab work not completed during class should plan be finished as part of homework. I will assign lab partners, with pairings changed approximately every week.

In addition to an in-class, lab-based format throughout the semester, supplemental programming problems are assigned to provide additional practice and to suggest a range of applications beyond the courses robotic application theme.

Course Components

Course Work will involve a combination of several activities. Submission instructions vary somewhat according to the type of the assignment.

Anticipated Work Load

As noted above, this course includes a variety of activities, including class preparation (reading), labs and projects (started in class and finished for homework), and supplemental problems (some required and some available for extra credit), as well as quizzes, tests, and a final exam. From past experience, the time required for these activities will likely vary substantially from student to student and from one part of the course to another. For example, a student may need to devote considerable time and effort when starting a new or different topic, but the workload may drop noticeably when that material is mastered.

Such variation in student experiences complicates any estimation of the time individual students may need to devote to homework for this course. However, from past experience, students working steadily on the course likely should expect to allocate 10-15 hours per week to homework. Some students may require additional time for some weeks; some students may complete work in less time for some weeks. Conversations with computer science faculty and others suggest this time allocation is consistent with expectations for many courses at Grinnell College.

Resources

Instructor

Henry M. Walker

Office: Science 2806
Telephone: extension 4208
E-mail: walker@cs.grinnell.edu

Office hours are posted weekly on the bulletin board outside Science 2806, with additional hours possible by appointment. You may reserve a half hour meeting by signing up on the weekly schedule, but please sign up at least a day in advance.

Reference Materials

Readings and examples for this course are under development. As noted in the day-by-day schedule, complete readings, examples, projects, and labs are available for most class sessions throughout the semester. As tabulated in the course link on Project Scope/Acknowledgments, materials available for this course extend beyond 100,000 lines of text. With such resources available, students may not have a need for a separate textbook.

However, some students may wish to consult additional materials on a regular basis to supplement the course's online resources. The following two books provide substantial background, but these book target different audiences. CSC 161 students may wish to obtain one of these references for use in this course. CSC 161 students need NOT obtain either of these references, and purchasing both references is likely unnecessary.

  1. K. N. King, C Programming: A Modern Approach, Second Edition, W. W. Norton, 2008, ISBN 978-0393979503.

    • Targeted audience: Introductory CS students who are beginning their exploration of imperative problem solving and C
    • Approach: Teaching manual including many examples and much narrative
    • Style: Narrative with definition of terms and extended discussion
  2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition, Prentice Hall, 1988, ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).

    • Targeted audience: computing professionals who already know many computing concepts (but not C)
    • Approach: Reference book — the standard reference for the C programming language
    • Style: Terse with use of common technical terms

Additional references follow:

A Note on Typos

Planning and development of materials for this course represent an extensive effort:

Although the developers have read, re-read, and refined the materials extensively, one can be confident that typographical errors remain.

If you find an error, if something does not read well, if deadlines on one page do not seem to match those stated on another page, etc. — don't panic (or use colorful language). Rather, please talk to the instructor (nicely please). Thanks!

Collaboration

Pair Responsibilities

Work on labs and projects in this course is often done collaboratively (in pairs, occasionally in a group of three). Many studies suggest substantial benefits to learning with this type of group work. However, to be successful, collaboration requires partners to actively participate.

Failure to meet one's responsibilities to a group not only impacts the individual, but also impedes the education of the partner. Thus, except in exceptional circumstances (e.g., illness, family emergencies, serious injury), failure to follow through with one's responsibilities as a partner may have a significant impact on one's course grade and/or one's standing in the course. See Responsibilities for pair programming for details.

Academic Honesty

All work in this course is governed by the rules of the college regarding academic honesty. In summary, standard practice requires that you must acknowledge all ideas from others.

Collaboration

Collaboration is allowed on laboratory exercises and projects (i.e., all work done in class), but collaboration normally will NOT be allowed on supplemental problems and tests.

Course Policies

Dates, Deadlines

Grinnell College offers alternative options to complete academic work for students who reserve religious holy days. Please contact me within the first three weeks of the semester if you would like to discuss a specific instance that applies to you.

Normally, laboratory write-up, project, or program is due about every third class meeting. Laboratory exercises, projects, and supplemental problems all require work to be submitted via email to csc161-01-grader@grinnell.edu or csc161-02-grader@grinnell.edu and in paper form. (The email address should correspond to your CSC 161 section.) Both email and paper copies must be received before the stated deadline.

It is expected that the materials submitted electronically will match the materials submitted in paper form. Discrepancies may raise questions of academic dishonesty and be subject to review by the Committee on Academic Standing.

Deadlines are shown on the Tentative Class Schedule , and work is due at the start of each class specified. A penalty of 25% per class meeting will be assessed for any assignment turned in late, even work submitted in the middle or the end of a class. For example, paper printed at the start of class will inevitable be turned in after the start of a class, and thus will be considered late. Print your materials well before the start of class!

Exceptions to the deadline policy and its penalties:

Emergencies, Illness

Although dates for labs, programming assignments, tests, and the final exam are firm, I understand that circumstances arise when you are not able to attend class.

Absolute Deadline: All homework must be turned in by Friday, 11 May, at 5:00 pm;
laboratory reports, projects, or programs received after that time will not be counted in the grading of the course.

Cell Phones, Text Messaging, and E-Community Devices

Cell phones, text-messaging devices, and other social-networking connections may not be used in this class. If you bring such equipment to the classroom, it must be turned off before the class starts and stay off throughout the class period. Use of such equipment is distracting to those nearby and will not be tolerated.

Accommodations

If you have specific physical, psychiatric, or learning disabilities and require accommodations, please let me know early in the semester so that your learning needs may be appropriately met. You will need to provide documentation of your disability to the Office of Student Affairs. Feel free to talk to me if you have questions or want more information.

Grading

This instructor's grading philosophy dictates that the final grade should ultimately be based upon each student's demonstration of her or his understanding of the material, not on the performance of the class as a whole nor on a strict percentile basis. The following scheme is proposed as a base for how the various assignments and tests will be counted in the final grade.

Lab Write-ups: 15%     Supplemental Problems: 20%     Projects: 20%     Hour Tests: 25%     Exam: 20%